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Abstract

The advent of high-throughput pro�ling methods (such as genomics or imaging) has accelerated basic
research and made deep molecular characterization of patient samples routine. These approaches
provide a rich portrait of genes, molecular pathways, and cell types involved in disease phenotypes.
Machine learning (ML) can be a useful tool to extract disease-relevant patterns from high dimensional
datasets. However, depending on the complexity of the biological question, machine learning often
requires many samples to identify recurrent and biologically meaningful patterns. Rare diseases are
inherently limited in clinical cases and thus have few samples to study. In this perspective, we outline
the challenges and emerging solutions for using ML for small sample sets, speci�cally that of rare
diseases. Advances in ML methods for rare diseases are likely to be informative for applications
beyond rare diseases such as incorporating genomics into predictive modeling in precision medicine
in which sample sizes are small but datasets are high-dimensional. We propose that the methods
community prioritizes the development of ML techniques for rare disease research.



Introduction

Rare disease researchers increasingly depend on machine learning (ML) to analyze high-dimensional
datasets. A systematic review of ML applications in rare diseases (as de�ned in the European Union,
i.e. fewer than �ve patients per 10,000 people) uncovered 211 human studies that used ML to study
74 rare diseases over the last ten years.[1] Indeed, ML can be a powerful tool in biomedical research
but it does not come without pitfalls, some of which are magni�ed in a rare disease context.[2] In this
perspective, we discuss considerations for using two types of ML – supervised and unsupervised
learning – in the study of rare diseases, with a speci�c focus on high-dimensional molecular data.

ML algorithms are computational methods that identify patterns in data, often in the form of lower-
dimensional representations that can be used to perform useful computational tasks. 
Supervised learning algorithms must be trained with data in which samples are “labeled” with a trait
of interest, such as a biological or clinical phenotype. Supervised methods can learn correlations of
features (e.g., expression measurements of a large number of genes) that may be associated with
these labels to predict or infer these labels in unlabeled data, such as predicting which patients will or
will not respond to treatment. Therefore, if a study aims to classify patients with a rare disease into
disease subtypes based on high-throughput molecular pro�ling, a supervised ML algorithm is
appropriate to carry out this task. Conversely, unsupervised learning algorithms learn patterns or
features from unlabeled data. In the absence of known disease subtypes, unsupervised ML
approaches can be applied to gene expression data to identify groups of samples with similar
patterns of molecular states or pathway activity. [3]. Unsupervised approaches can also extract
combinations of features (e.g., genes) that may describe a certain cell type or pathway. See Box 1 for
more examples of how ML can be used in rare disease research.

While ML can be a useful tool, there are challenges in applying ML to rare disease datasets. ML
methods are generally most e�ective when using large datasets; analyzing high dimensional
biomedical data such as gene expression with many thousands of features from rare disease datasets
that typically contain relatively few samples is challenging[1,4]. Small sample datasets tend to lack
statistical power and magnify the susceptibility of ML to misinterpretation and unstable performance.
With insu�cient data, an unsupervised model will fail to identify patterns that are useful for biological
discovery. In the case of supervised models, they can be adversely impact if sample labels are
uncertain or contain “label-noise”. [5] Datasets with high label-noise decrease prediction accuracy and
necessitate larger sample sizes during the process by which models learn patterns that distinguish
samples in di�erent classes [6] (model training; Box 2). Rare disease datasets often come with
signi�cant label-noise. For example, if classi�cations of rare disease subtypes evolve over time,
researchers constructing datasets for ML research may �nd that cohorts collected at di�erent time
periods do not have comparable labels. Additionally, a supervised ML model is of limited utility if it can
only accurately predict sample labels in the data it was trained on, also known as over�tting. Instead,
most researchers aspire to develop models that generalize (maintain performance) when applied to
new data that has not yet been “seen” by the model.

While we expect ML in rare disease research to continue to increase in popularity, the �eld requires
methods that can learn patterns from small datasets and can generalize to newly acquired data [7]. In
this perspective, we highlight approaches that address or better tolerate the limitations of rare
disease data and discuss the future of ML applications in rare disease.

Constructing machine learning-ready rare disease datasets

High-throughput ‘omic’ assays can generate thousands to billions of measurements from whole
transcriptome and whole genome sequencing respectively, resulting in high-dimensional datasets. A



typical rare disease dataset consists of a small number of samples[1] leading to the “curse of
dimensionality” in which the feature space is much larger than the sample space, increasing the
di�culty in building highly generalizable models [8]. A larger feature space can contribute to higher
data missingness (sparsity), more dissimilarity between samples (variance), and increased redundancy
among individual features or combinations (multicollinearity) [9], all of which contribute to challenges
in ML implementation.

An important factor in ML is model performance: the accuracy of a supervised model in identifying
patterns relevant for a biological question, or the reliability of an unsupervised model in identifying
hypothetical biological patterns supported by post-hoc validation. When small sample sizes
compromise an ML model’s performance, two approaches can be taken to manage sparsity, variance,
and multicollinearity: 1) increase the number of samples, 2) improve the quality of samples. In the �rst
approach, appropriate training, evaluation, and held-out validation sets could be constructed by
combining multiple rare disease cohorts (Figure [1]a, Box 2). When combining datasets, special
attention should be directed towards data harmonization since data collection methods can di�er
between cohorts. Without careful selection of aggregation methods, one may introduce technical – in
contrast to biological – variability into the combined dataset and negatively impact the ML model’s
ability to learn or detect meaningful signals. Steps like reprocessing data using a single pipeline, using
batch correction methods [10,11], and normalizing raw values appropriately without a�ecting the
underlying variance in the data [12] may be necessary to mitigate unwanted variability. (Figure [1]a)
Data harmonization may also entail standardization of sample labels using biomedical ontologies to
normalize how samples are described across multiple datasets.

How does one know if a composite dataset has undergone proper harmonization and annotation?
Ideally, the dominant patterns of the composite dataset re�ect variables of interest, such as
phenotype labels rather than technical labels. In the latter case, this suggests that the datasets used
to generate the composite dataset need to be corrected to overcome di�erences in how the data
were generated or collected. In the next section, we discuss approaches that help identify and
visualize structure in datasets to determine whether composite rare disease datasets are appropriate
for ML use.

Learning representations from rare disease data

Dimensionality reduction methods help explore and visualize underlying structure in the data (e.g.,
[15]), to de�ne sample subgroups (e.g., [16]), or for feature selection and extraction during
application of speci�c machine learning models [17] (Figure [2]c). Unsupervised methods, in �nding
low-dimensional patterns in data, can ‘compress’ information from a large number of features into a
smaller number of features [18,19,20] (Figure [2]). A method commonly used for dimensionality
reduction is principal components analysis (PCA). PCA identi�es higher order features, termed
principal components (PCs), that are combinations of original features. The PCs are calculated in a
way that maximizes the amount of information (variance) they contain and ensures that each PC is
uncorrelated with the other PCs. [19] In practice, researchers often use the �rst few PCs to reduce the
dimensionality without removing what may be important biological variability in the data. Nguyen and
Holmes highlight the use of “elbow method” to select the number of appropriate dimensions. [22]
Multidimensional scaling (MDS), t-distributed stochastic neighbor embedding (t-SNE), and uniform
manifold approximation and projection (UMAP) are other popular dimension reduction methods,
often used for low-dimensional visualization and interpretation of data [20,23] Testing multiple
dimensionality reduction methods may be necessary to obtain a more comprehensive portrait of the
data. [24] Other unsupervised learning approaches such as k-means or hierarchical clustering are
used to characterize structure in genomic and imaging data. [25,26] Dimensionality reduction
methods are a subset of a type of ML called representation learning. Representation learning
methods have been used to extract features from transcriptomics datasets made of combinations of



gene expression values [24,27,28], predict rare pathologies from images [29] (Box 1a) or detect cell
populations associated with rare diseases [30].

When applied to complex systems, representation learning generally requires many samples and
therefore may appear to aggravate the curse of dimensionality. However, it can be a powerful tool to
learn low-dimensional patterns from large datasets and then �nd those patterns in smaller, related
datasets. In later sections, we discuss this method of leveraging large datasets to reduce
dimensionality in smaller datasets, also known as feature-representation-transfer learning. Once the
dimensions of the training dataset have been reduced, model training can proceed using the
experimental design as outlined in Box 2.

Reducing misinterpretation of model output with statistical
techniques

The successful application of ML can be improved by meeting certain conditions. First, the dataset
contains su�cient representation from each class such that relevant variability from that class is
captured. Second, the dataset is complete; all samples have measurements for all variables in the
dataset (i.e., the dataset is not “sparse”, it is not missing data for some of the samples). Third, there is
no ambiguity about the labels for the samples in the dataset (i.e., no “label-noise”).

Rare disease datasets violate many of these assumptions. Small number of samples for speci�c
classes fail to fully capture the sample variability in those classes, e.g. only a few patients with a
particular rare disease in a health records dataset, which can require special consideration for
evaluation (Box 2). The data are also often sparse, and there may be abundant label-noise due to
incomplete understanding of the disease. All of these contribute to low signal to noise ratio in rare
disease datasets. Applying ML to such data without addressing these shortcomings may lead to
models that have poor generalizability or are hard to interpret.

Class imbalance in datasets can be addressed using decision tree-based ensemble learning methods
(e.g., random forests). [31] (Figure[3]a) Random forests use sampling with replacement based
techniques to form a consensus about the important predictive features identi�ed by the decision
trees (e.g., Box 1c). [32,33] Additional approaches like combining random forests with sampling
without replacement can generate con�dence intervals for the model predictions (for applications like
Box 1d) by mimicking real world cases where most rare disease datasets are incomplete [34].
Resampling approaches are most helpful in constructing con�dence intervals for algorithms that
generate the same outcome every time they are run (i.e., deterministic models). For decision trees
that choose features at random for selecting a path to the outcome (i.e., are non-deterministic),
resampling approaches can be helpful in estimating the reproducibility of the model.

When decision tree-based ensemble methods fail for rare disease datasets, cascade learning is a
viable alternative. [35] In cascade learning, multiple methods leveraging distinct statistical techniques
are used to identify stable patterns in the dataset [???,36,37]. For example, a cascade learning
approach for identifying rare disease patients from electronic health record data (Box 1a)
incorporated independent steps for feature extraction (word2vec [38]), preliminary prediction with
ensembled decision trees, and then prediction re�nement using data similarity metrics. [35]
Combining these three methods resulted in better overall prediction when implemented on a silver
standard dataset, as compared to a model that used ensemble-based prediction alone. In addition to
cascade learning, approaches that better represent rare classes using class re-balancing techniques
like inverse sampling probability weighting [39], inverse class frequency weighting [40], oversampling
of rare classes [41], or uniformly random undersampling of majority class [42] may also help
minimize issues associated with class imbalance.



The presence of label-noise and sparsity in the data can lead to poor generalizability or over�tting,
meaning that the models show high prediction accuracy on the training data but low prediction
accuracy on new evaluation data. Over�t models tend to rely on patterns that are unique to the
training data, such as the clinical coding practices at a hospital, and not generalize to new data such as
data collected at di�erent hospitals. [43,44] Regularization approaches can help mitigate these
scenarios by adding constraints to a model to avoid making large prediction errors. This protects ML
models from poor generalizability by reducing model complexity and minimizing model feature space
[45]. (Figure[3]a) Examples of ML methods with regularization include ridge regression, LASSO
regression, and elastic net regression [47], among others. LASSO regularization helped select a few
informative genes as features to include in models classifying amyotrophic lateral sclerosis (ALS)
patients and healthy patients with high accuracy based on brain tissue gene expression, thus making
the models more interpretable. [48] In the context of rare immune cell signature discovery, where a
few genes or features are expected to distinguish between immune cell types, elastic-net regression
was able to exclude groups of uninformative genes by reducing their contribution to zero. [49] In a
study using a variational autoencoder (VAE) (see Box 3) for dimensionality reduction in gene
expression data from acute myeloid leukemia (AML) samples, the KL loss between the input data and
its low dimensional representation provided the regularizing penalty for the model. [51,52] A study
using a convolutional neural network (CNN) to identify tubers in MRI images from tuberous sclerosis
patients (an application that can facilitate Box 1a), minimized over�tting using the dropout
regularization method which removed randomly chosen network nodes in each iteration of the CNN
model generating simpler models in each iteration.[53] Thus, depending on the learning method
used, regularization approaches should be considered when working with rare disease datasets.



Building upon prior knowledge and indirectly related data

One strategy to overcome the paucity of data in rare disease is to combine a variety of data types and
explore rare disease data alongside other existing knowledge. By using several data modalities, such
as curated pathways, genetic data, or drug-target relationships, it may be possible to gain a better
understanding of rare diseases. Knowledge graphs (KGs) which integrate related-but-di�erent data
types, provide a rich multimodal data source e.g., Monarch Graph Database [54], hetionet [55],
PheKnowLator [56], and the Global Network of Biomedical Relationships [57], Orphanet [58]. These
graphs connect genetic, functional, chemical, clinical, and ontological data so that relationships of
data with disease phenotypes can be explored through manual review [59] or computational
methods [60,61]. (Figure[3]a) KGs may include links (i.e. edges) or nodes that are speci�c to a rare
disease of interest (e.g., an FDA approved treatment would be a speci�c disease-compound edge in
the KG) and more generalized information (e.g., gene-gene interactions noted in the literature for a
di�erent disease). (Figure [4]a)

Rare disease researchers can repurpose general biological or chemical KGs that are not disease-
speci�c to answer rare disease-based research questions [62] (e.g. Box 1b). One tactic to sift through
the large amounts of data encoded in KGs is to calculate the distances between nodes of interest (e.g.,
diseases and drugs for Box 1b [62]); often done by determining the “embeddings” - lower dimension
vector representations of the position and connections of a particular point in the graph for nodes in
the KG, and calculating the similarity between these embeddings. E�ective methods to calculate node
embeddings that can generate actionable insights for rare diseases is an active area of research [62].

Another application of KGs is to augment a dataset [63]. Li et. al.[61] used a KG to identify linked
terms in a medical corpus from a large number of patients, some with rare disease diagnoses. They
augmented their text dataset by mapping related clinical terms together - e.g., mapping “cancer” and
“malignancy” in di�erent patients to the same clinical concept. With this enhanced dataset, they
trained and tested a variety of text classi�cation algorithms to identify rare disease patients within
their corpus. (Figure [4]b, Box 1a)

Rare disease researchers have also integrated multiple KGs and applied neural network-based
algorithms optimized for graph data, such as a graph convolutional neural networks. Rao and
colleagues [64] describe the construction of a KG using phenotype information from the Human
Phenotype Ontology, and rare disease information from Orphanet and curated gene
interaction/pathway data from Lit-BM-13 and WikiPathways [65,66,67]. They trained a spectral graph
convolution neural network on this KG to identify and rank potentially causal genes for the rare
diseases from Orphanet, and used this model to accurately predict causal genes for a ground truth
dataset of rare diseases with known causal genes. While several groups have used KGs to study rare
diseases, we expect that better multi-modal datasets and ML methods to analyze KGs will make them
a more popular and important tool in rare disease.

Another approach that builds on prior knowledge and large volumes of related data is transfer
learning, a modeling technique that “borrows strength” across datasets with both similar and distinct
properties like an imaging anomaly present in both rare and common diseases, to advance our
understanding of rare diseases. Transfer learning, where a model trained for one task or domain
(source domain) is applied to another related task or domain (target domain), can be supervised or
unsupervised. Among various types of transfer learning, feature-representation-transfer approaches
learn representations from the source domain and apply them to a target domain [68](Figure [5]a-c).
That is, representation learning, as discussed earlier, does not need to be applied only to describe the
dataset on which the algorithm was trained – it can also be used to elucidate signals in su�ciently
similar data (Figure [5]c) and may o�er an improvement in descriptive capability over models trained
only on small rare disease datasets (Fig [5]c). For instance, low-dimensional representations can be



learned from tumor transcriptomic data and transferred to describe patterns in genetic alterations in
cell lines [24](Figure [5]c). In the next section, we summarize speci�c instances of applying transfer
learning, along with other techniques, to the study of rare diseases.

Combining approaches is required for the successful application of
machine learning to rare diseases

We have described multiple approaches for maximizing the success of ML applications in rare disease,
but it is rarely su�cient to use any of these techniques in isolation. Below, we highlight two examples
in the rare disease domain that use concepts of feature-representation-transfer, use of prior data,
and regularization.

Our �rst example includes a large dataset of acute myeloid leukemia (AML) patient samples with no
drug response data and a small in vitro experiment with drug response data [69]. Training an ML
model on the small in vitro dataset alone faced the curse of dimensionality and the dataset size
prohibited representation learning. Dincer et al. trained a variational autoencoder (VAE, Box 3) on a
reasonably large dataset of AML patient samples from 96 independent studies to learn meaningful
representations in an approach termed DeepPro�le [51] (Figure[6]a). The representations or
encodings learned by the VAE were then transferred to the small in vitro dataset reducing its number
of features from thousands to eight, and improving the performance of the �nal LASSO linear
regression model (Box 1b). In addition to improving performance, the encodings learned by the VAE
captured more biological pathways than PCA, possibly due to the constraints on the encodings
imposed during training (Box 3). Similar results were observed for prediction of histopathology in
another rare cancer dataset [51].

While DeepPro�le was centered on training on an individual disease and tissue combination, some
rare diseases a�ect multiple tissues that a researcher may want to study (e.g., Box 1d). Studying
multiple tissues poses signi�cant challenges and a cross-tissue analysis may require comparing
representations from multiple models. Models trained on a low number of samples may learn
representations that “lump together” multiple biological signals, reducing the interpretability of the
results. To address these challenges, Taroni et al. trained a Pathway-Level Information ExtractoR
(PLIER) (a matrix factorization approach that takes prior knowledge in the form of gene sets or
pathways) [70] on a large generic collection of human transcriptomic data [71]. PLIER used
constraints (regularization) that learned latent variables aligned with a small number of input gene
sets, making it suitable for rare disease data. The authors transferred the representations or latent
variables learned by the model to describe transcriptomic data from the unseen rare diseases
antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and medulloblastoma in an
approach termed MultiPLIER [71]. (Figure[6]b) MultiPLIER used one model to describe multiple
datasets instead of reconciling output from multiple models, making it possible to identify
commonalities among disease manifestations or a�ected tissues.

DeepPro�le [51] and MultiPLIER [71] exemplify modeling approaches incorporating prior knowledge –
thereby constraining the model space according to plausible or expected biology – or sharing
information across datasets. These two methods capitalize on similar biological processes observed
across di�erent biological contexts and the fact that the methods underlying the approaches can
e�ectively learn about those processes.

Outlook

This perspective highlights challenges in applying ML to rare disease data and approaches that
address these challenges. Small sample size, while signi�cant, is not the only roadblock. The high
dimensionality of modern data requires creative approaches, such as learning new representations of



the data, to manage the curse of dimensionality. Leveraging prior knowledge and transfer learning
methods to appropriately interpret data is also required. Furthermore, we posit that researchers
applying ML methods on rare disease data should use techniques that increase con�dence (i.e.,
bootstrapping) and penalize complexity of the resultant models (i.e., regularization) to enhance the
generalizability of their work. It should be noted that the line between classical statistical methods and
ML is fuzzy. Multiple statistical techniques that were considered to be out of scope of this article
(e.g. hierarchical models, Bayesian frameworks, association tests) [72,73,74,75], may have substantial
potential to enhance the accuracy and generalizability of models, and should be considered in the
rare disease study design process.

The approaches highlighted in this perspective come with challenges that may undermine
investigators’ con�dence in using these techniques for rare disease research. We believe that the
challenges in applying ML to rare disease are opportunities to improve data generation and method
development going forward. The following two areas are particularly important for the �eld to
explore.

Intentional data generation and sharing mechanisms are key for
powering the future of rare disease data analysis

While many techniques exist to collate rare data from di�erent sources, low-quality data may hurt the
end goal even if it increases the size of the dataset. In our experience, collaboration with domain
experts has proved to be critical in gaining insight into potential sources of variation in the datasets.
An anecdotal example: conversations with a clinician revealed that samples in a particular tumor
dataset were collected using vastly di�erent surgical techniques (laser ablation and excision vs
standard excision). This information, not readily available to non-experts, was obvious to the clinician.
Such instances suggest that collaboration with domain experts and sharing of well-annotated data is
needed to generate robust datasets.

In addition to sample scarcity, comprehensive phenotypic-genotypic databases are also lacking. While
rare disease studies that collect genomic and phenotypic data are becoming more common
[76,77,78], developing comprehensive genomics-based genotype-phenotype databases that prioritize
clinical and genomics data standards is key to fueling interpretation of ML methods. This method can
be bolstered by funding or fostering collaboration between biobanking projects and patient registry
initiatives. Mindful sharing of data with proper metadata and attribution enabling prompt data reuse
is important in building valuable datasets for rare disease research [79]. Finally, federated learning
methods, such as those used in mobile health [80] and electronic healthcare records studies [81],
may allow researchers to develop ML models on data from larger numbers of people with rare
diseases whilst protecting patient privacy.

Methods that reliably support mechanistic interrogation of speci�c
rare diseases are an unmet need

Most ML methods for rare diseases are used for classi�cation tasks. Not many methods investigate
biological mechanisms; this is likely due to a lack of methods that can handle the limitations of rare
disease data described throughout this perspective. Developing methods to address this will be
critical for applying ML to rare disease data.

For example, development of methods with a focus on explainability of the model can identify
features that may be related to the underlying disease mechanism.[82] Alternatively, representation
learning or regularization methods may help identify multiple correlated features which can be
interrogated to identify biologically meaningful pathways. Additionally, robust error analysis for newly
developed models to help users understand how a feature in�uences the performance of a model can



provide insight into its potential contribution to the underlying disease mechanism. [83] Interrogating
disease mechanisms by adopting modi�cations of these approaches is necessary as ML applications
become mainstream in research and clinical settings.

Finally, methods that can reliably integrate disparate datasets will likely always remain a need in rare
disease research. Methods that rely on �nding structural correspondence between datasets
(“anchors”) may be able to transform the status-quo of using ML in rare disease [84,85,86]. We
speculate that this is an important and burgeoning area of research, and we are optimistic about the
future of applying ML approaches to rare diseases.
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Figure 1:  Combining datasets to increase data for training machine learning models. a) Appropriate methods are
required to combine smaller datasets into a larger composite dataset: The left panel shows multiple small, rare disease
datasets that need to be combined to form a dataset of higher sample size. The color of the samples suggests classes or
groups present in the datasets. The shape represents the dataset of origin. The middle panel shows methods that may
be used to combine the datasets while accounting for dataset-speci�c technical di�erences. The right panel shows
Principal Component Analysis of the combined datasets to verify proper integration of samples in the larger dataset. b)
Composite datasets can be used to make training, evaluation, and validation datasets for machine learning: Left panel
shows the division of the composite dataset into training dataset and a held-out validation dataset (top). The held-out
validation set is a separate study that has not been seen by the model. The training set is further divided into training
and evaluation datasets for k-fold cross-validation (in this example k=4), where each fold contains all samples from an
individual study. This approach is termed study-wise cross validation and supports the goal of training models that
generalize to unseen cohorts. c) Barplot showing the class distribution of the training, evaluation, and held-out
validation datasets from panel (b).

Figure 2:  Representation learning can extract useful features from high dimensional data. a) The data (e.g.,
transcriptomic data) are highly dimensional, having thousands of features (displayed as Fa-Fz). Samples come from two
separate classes (purple and green row annotation). b) In the original feature space, Fa and Fb do not separate the two
classes (purple and green) well. c) A representation learning approach learns new features (e.g., New Feature 1, a



combination of Fa, Fb …. Fz, and New Feature 2, a di�erent combination of Fa, Fb …. Fz). New Feature 2 distinguishes
class, whereas New Feature 1 may capture some other variable such as batch (not represented). New features from the
model can be used to interrogate the biology of the input samples, develop classi�cation models, or use other analytical
techniques that would have been more di�cult with the original dataset dimensions.

Figure 3:  Strategies to reduce misinterpretation of machine learning model output in rare disease. a) Bootstrapping:
Left panel shows a small rare disease dataset, which can be resampled with replacement using bootstrap to form a
large resampled dataset (middle panel). Running the same ML model on multiple resampled datasets generates a
distribution of values for the importance scores for each feature utilized by the ML model (right panel), b) Cascade
Learning: A schematic showing the di�erent steps in a cascade learning approach for identifying rare disease patients
from electronic health record data. The bar plot in the middle panel schematically represents patient classi�cation
accuracy after ensemble learning. The accuracy is high for non-rare diseases, but low for rare diseases. The bar plot on
the right panel depicts classi�cation accuracy after implementation of cascade learning. The accuracy is high for both
non-rare and rare diseases. c) Regularization: A schematic showing the concept of regularization to selectively learn
relevant features. The samples (green and blue circles) in the rare disease dataset on left panel can be represented as a
combination of features. Each horizontal bar in the middle panel (training set) represents a feature-by-sample heatmap
for one sample each. In the held-out validation dataset, for a sample of unknown class (open circle), some features
recapitulate the pattern present in the training set, while others do not. The right panel depicts accuracy of predicting
the class of the open circles with or without using regularization during implementation of the ML models on rare
disease data. Without regularization the classi�cation accuracy is low due to presence of only a subset of learned
features (denoted by dashed rectangle in middle panel), but with regularization this subset of features is su�cient to
gain high classi�cation accuracy.



Figure 4:  Application of knowledge graphs can improve machine learning in rare disease. a) Knowledge graphs
integrate di�erent data types (e.g., genetic, functional, clinical, chemical, and ontological data) and may allow models to
learn from connections that are rare disease-speci�c or happen in many biomedical contexts. There are a variety of
possible applications of this approach, including identifying new disease-drug relationships [62], augmenting data to
improve accuracy of models trained on the data [63], or mining prior knowledge to discover important gene sets and
pathways in rare diseases [64]. b) Knowledge graphs can also be used to augment data. Li et. al. [61] applied a classi�er
to an EHR corpus to identify rare disease patients. They trained a classi�er on the EHR data alone (e.g.,
thrombocytopenia, anemia) and trained another classi�er on data augmented with medically-related concepts from a
knowledge graph (e.g., neutropenia, stroke). The classi�er trained on knowledge-graph augmented data has lower error
and higher accuracy (right panel).



Figure 5:  Feature-representation-transfer approaches learn representations from a source domain and apply them to
a target domain. a) Combination of features representing samples of a large dataset (transcriptomic data from tumors)
are learned by an ML model through representation learning. b) When applied to a small cell line dataset, the
representations extracted by an ML model tend to be incomplete and correlate poorly with clinical or drug sensitivity
features. c) When a representation learning model trained on the large dataset (a) is applied to the small cell line dataset
to extract consistent combinations of features based on the combinations found in the larger training dataset, the
extracted representations correlate strongly with the clinical or drug sensitivity features



Figure 6:  Combining multiple strategies strengthens the performance of ML models in rare disease. a) The authors of
DeepPro�le trained a variational autoencoder (VAE) to learn a representation from acute myeloid leukemia data without
phenotype labels, transferred those representations to a small dataset with phenotype labels, and found that it
improved prediction performance in a drug sensitivity prediction task [51]. b) The authors of MultiPLIER trained a
Pathway-Level Information ExtractoR (PLIER) model on a large, heterogeneous collection of expression data (recount2
[87]) and transferred the representations (termed latent variables) to multiple datasets from rare diseases that were
not in the training set [70]. Expression of PLIER latent variables can be used to check for concordance between datasets,
among other applications.

Box 1: Common uses for machine learning in rare disease:

(a) Identifying patients with rare diseases

ML can be used to identify features in high dimensional data that correlate strongly with a patient or
sample phenotype and subsequently predict the presence or absence of a rare disease. For example,
supervised ML models can be trained on electronic health records, genetic data, or medical images to
identify potential new patients with a rare disease.

(b) Drug discovery or repurposing



ML can help identify potential drug candidates for rare diseases. For example, unsupervised and
supervised algorithms trained on genetic and molecular data from high throughput screens can
identify novel therapeutic targets for a rare disease. Additionally, algorithms utilizing knowledge
graphs, genomic data, and databases of existing approved drugs can identify potential therapeutic
candidates for rare diseases.

(c) Clinical trial design improvement

Optimized study design and identi�cation of appropriate trial participants can greatly reduce costs
while increasing the likelihood of successful outcomes for clinical trials. ML approaches can bene�t
clinical trial study design. For example, unsupervised ML approaches can be used to identify sub-
groups of patients who are more likely to respond well to a particular treatment. Supervised ML
approaches can also be used to predict drug response in rare disease patients.

(d) Molecular subtyping of disease

Rare diseases often show overlapping and heterogenous phenotypes. ML approaches can be used to
identify molecular subtypes of the disease for better understanding. For example, unsupervised ML
approaches can help identify new subtypes of a rare disease using molecular and genetic data. The
same approaches can help identify the important molecular features that de�ne the subtypes.

(e) Patient prognosis prediction

Rare diseases can su�er from lack of in-depth understanding of disease mechanism. Biomarkers or
clinical features that correlate strongly with adverse outcomes can be bene�cial in predicting
prognosis of a patient. Supervised ML algorithms can be useful in identifying factors contributing to
risk of adverse outcomes or progression to advanced disease in rare disease patients. Patient
strati�cation can help identify patient subpopulations who can bene�t by early and aggressive
interventions.

Box 2: Understanding experimental design of ML to inform
requirements for data:

Components of ML experiments

ML algorithms identify patterns that explain or �t a given dataset. Every ML algorithm goes through
training, where it identi�es underlying patterns in a given dataset to create a “trained” algorithm (a
model), and testing, where the model applies the identi�ed patterns to unseen data points. Typically,
a ML algorithm is provided with: 1. a training dataset , 2. an evaluation dataset , 3. a held-out
validation dataset. These input data can be images, text, numbers, or other types of data which are
typically encoded as a numerical representation of the input data. A training dataset is used by the
model to learn underlying patterns from the features present in the data of interest. An evaluation
dataset is a small and previously unused dataset which is used during the training phase to help the
model iteratively update its parameters (i.e., hyperparameter tuning or model tuning). In many cases,
a large training set may be subdivided to form a smaller training dataset and the evaluation dataset,
both of which are used to train the model. In the testing phase, a completely new or unseen test
dataset or held-out validation set is used to test whether the patterns learned by the model hold true
in new data (i.e., they are generalizable). While the evaluation dataset helps us re�ne a model’s �t to
patterns in the training data, the held-out validation set helps us test the generalizability of the model.



If a model is generalizable, it is able to make accurate predictions on new data. High generalizability of
a model on previously unseen data suggests that the model has identi�ed important patterns in the
data that are not unique to the data used for training and tuning. Generalizability can be a�ected if
data leakage occurs during training of the model, i.e., if a model is exposed to the same or related
data points in both the training set and the held-out validation set. Ensuring absence of any overlap or
relatedness among data points or samples used in the training set and evaluation set is important to
avoid data leakage during model training. Speci�cally, in cases of rare genetic diseases where, for
example, many samples can contain familial relationships or data from the same patient could be
collected by multiple specialists at di�erent clinical facilities, special care should be taken while
crafting the training and testing sets to ensure that no data leakage occur and the trained model has
high generalizability.

Training and testing

The implementation of a ML experiment begins with splitting a single dataset of interest such that a
large proportion of the data is used for training, and the remaining data is used for testing or
validation as the held-out validation dataset. The training dataset is generally subdivided into the
training dataset and the evaluation dataset. Ideally, a held-out validation dataset is an entirely new
study or cohort, as researchers typically aim to build models that generalize to unseen, newly
generated data. In rare diseases where multiple datasets may be combined to make a large enough
training dataset, special care should be taken to standardize the features and the patterns therein.
Although ML algorithms generally expect that datasets have uniform features, normalizing training
and testing data together may introduce similarities between samples (causing inadvertent data
leakage) that hamper the goal of training models that are highly generalizable.

The iterative training phase helps the model learn important patterns in the training dataset and then
use the evaluation dataset to test for errors in prediction and update its learning parameters
(hyperparameter tuning). The method by which the trained model is applied to the evaluation dataset
to measure performance and update the hyperparameters is called cross-validation. There are
multiple approaches that can be deployed to maximally utilize the available data when generating
training and evaluation datasets e.g., leave-p-out cross-validation, leave-one-out cross-validation, k-
fold cross-validation, Monte-Carlo random subsampling cross-validation.[88] In the case of k-fold
cross-validation, a given dataset is shu�ed randomly and split into k parts. One of the k parts is
reserved as the evaluation dataset and the rest are combined and used as the training dataset. In the
next iteration, a di�erent part is used as the evaluation dataset, while the rest are used for training.
To avoid data leakage, and to promote generalization of models to new studies, researchers can use
study-wise cross-validation, such that all samples from a study are in the same fold and no individual
study is represented in both the training and evaluation datasets. Once the model has iterated
through all k parts of the training and evaluation datasets, it is ready to be tested on the held-out
validation dataset.(Figure [1]b)

The held-out validation dataset is exposed to the model only once to estimate the accuracy of the
model. High accuracy of a model during cross-validation but low accuracy on the held-out validation
dataset is a sign that the model has become over�t to the training set and has low generalizability. If
there is evidence of over�tting, researchers should revisit the construction of the dataset to make
sure they meet the best practices outlined above.

It is important to note that accuracy alone may not be the best measure of performance in rare
disease datasets. A model tested for identifying rare disease samples may still achieve high accuracy if
it identi�es every sample as a non-rare disease sample. Measures that are more suitable to handle
class imbalance, such as the Kappa statistic or area under the precision-recall curve [89], are better
metrics for model performance for rare disease.



Box 3: De�nitions:

Knowledge Graph

A knowledge graph is a network representation of human knowledge about a domain, abstracted into
nodes and edges. Any entity of interest (for example a gene, a disease, a protein, or a cell-line) can be
represented as a node in a knowledge graph. All nodes can be linked through edges that represent
known relationships between the nodes. Edges can be directed, indicating that the order of the nodes
is important for encoding the relationship, or undirected. For example, a gene (node) can be linked to
a protein (node) using a directed edge that represents the relationship that the protein is generated
through the transcription and translation of the gene. Knowledge graphs serve to integrate data that
exist in distributed sources, encode human readable knowledge in machine readable format, and
evolve in a �exible manner to integrate new knowledge as it becomes available.

Machine Learning

Machine learning is a scienti�c discipline at the intersection of computer science and statistics, which
combines computational and statistical methods to identify patterns in sample data.[90] In this
discipline, one intends to use data as input and apply or �t predictive models to recognize patterns in
the data or identify informative groups among the data using objective computational methods.

Rare Disease

According to the Orphan Drug Act[4] of United States of America, diseases or conditions that impact
less than 200,000 people in the U.S are considered to be rare diseases. The European Union de�nes a
disease as rare when it a�ects less than 1 in 2,000 people.

Regularization

Regularization is an approach to reduce over�tting of models to training data, where a penalty or
constraint is added to a model trained on a training dataset to avoid making large prediction errors on
the evaluation dataset.

Transfer Learning

Transfer learning is an approach where a model trained for one task or domain (source domain) is
applied to another, typically related task or domain (target domain), for example a model pre-trained
natural images from the ImageNet dataset can potentially be used to classify medical images.[92]
Transfer learning can be supervised (one or both of the source and target domains have labels), or
unsupervised (both domains are unlabeled).

Variational Autoencoder

Variational Autoencoders or VAEs are unsupervised neural networks that use hidden layers to learn or
encode representations from available data while mapping the input data to the output data. VAEs
are distinct from other autoencoders since the distribution of the encodings are regularized such that
they are close to a normal distribution, which may contribute to learning more biologically relevant
signals [24].



Classi�cation in the Presence of Label Noise: a
Survey

[6]

Frénay and Verleysen (2014) de�ne and describe sources of label noise, consequences of label noise
on ML model development, and techniques that can help mitigate the resulting issues. It also suggests
few quality metrics that may be used to test newly developed models to understand their
performance in presence of noisy data.

Random Forests
[93]

Breiman (2007) describes the theory underlying random forest algorithm which is a popular ML
method with applications in almost every high-dimensional data �eld, including medicine and life
sciences. The paper also highlights the behavior of random forests in the presence of data where each
individual feature is not strong enough to distinguish between classes (weak inputs). This scenario is
frequently encountered in biomedical data and especially rare disease data.

Deriving disease modules from the compressed
transcriptional space embedded in a deep

autoencoder
[27]

Dwivedi, et. al. (2020) apply representation learning to meaningfully group genes into modules in a
data-driven manner. The authors turned the deep neural network into a “glass-box” by layering
knowledge-based interpretation on the gene modules identi�ed using a variational autoencoder to
provide insights into what each layer of their model represent.

Pathway-level information extractor (PLIER) for
gene expression data

[70]

Mao and colleagues (2019) use the principles of representation learning combined with prior-
knowledge to develop a model that capitalizes on correlated gene expression to identify meaningful
biological pathways and reduce noise in data introduced due to technical variation. This method has
been the foundation of mutiple recent works applying ML on rare disease gene expression data.



Automatic detection of rare pathologies in
fundus photographs using few-shot learning

[29]

Quellec, et. al. (2020) train a convolutional neural network (CNN) to identify rare pathologies in retinal
images. They used an approach called few-shot learning, in which the CNN is trained on a large cohort
of retinal images and then trained on a very small number of examples of retinal images with rare
pathologies.

A Literature-Based Knowledge Graph
Embedding Method for Identifying Drug

Repurposing: Opportunities in Rare Diseases
[62]

Sosa and colleages (2020) develop a knowledge graph of drug, disease, and gene relationships from
pubished medical literature. They then use a graph embedding method to explore the knowledge
graph and predict drug repurposing opportunities.


